1. ⁘  ⁘  ⁘
  2. ⁘  ⁘  ⁘
  3. Abo, Akinori 9
  4. aesthetics 19
  5. agile 30
  6. Albers, Josef 17
  7. Alexander, Christopher 135
  8. Alexander, Scott 5
  9. Allsopp, John 4
  10. Ammer, Ralph 6
  11. Anderson, Gretchen 7
  12. anxiety 9
  13. Appleton, Maggie 5
  14. Aptekar-Cassels, Wesley 5
  15. Arango, Jorge 4
  16. architecture 110
  17. art 86
  18. Asimov, Isaac 5
  19. attention 17
  20. Auping, Michael 6
  21. Aurelius, Marcus 14
  22. Bachelard, Gaston 12
  23. Baker, Nicholson 10
  24. beauty 58
  25. Behrensmeyer, Anna K. 7
  26. Bjarnason, Baldur 8
  27. Blake, William 5
  28. blogging 22
  29. body 11
  30. Boeing, Geoff 7
  31. boredom 9
  32. Botton, Alain de 38
  33. Brand, Stewart 4
  34. Bringhurst, Robert 16
  35. Brooks, Frederick P. 22
  36. Broskoski, Charles 6
  37. brutalism 7
  38. building 16
  39. bureaucracy 12
  40. Burnham, Bo 9
  41. business 15
  42. Byron, Lord 14
  43. Cagan, Marty 8
  44. Calvino, Italo 21
  45. Camus, Albert 13
  46. care 6
  47. Carruth, Shane 15
  48. Cegłowski, Maciej 6
  49. Cervantes, Miguel de 7
  50. chance 11
  51. change 16
  52. Chiang, Ted 4
  53. childhood 6
  54. Chimero, Frank 17
  55. choice 8
  56. cities 51
  57. Clark, Robin 3
  58. Cleary, Thomas 8
  59. Cleary, J.C. 8
  60. code 20
  61. collaboration 18
  62. collections 31
  63. color 23
  64. commonplace 11
  65. communication 31
  66. community 7
  67. complexity 11
  68. connection 24
  69. constraints 25
  70. construction 9
  71. content 9
  72. Corbusier, Le 13
  73. Coyier, Chris 4
  74. craft 66
  75. creativity 59
  76. crime 9
  77. Critchlow, Tom 5
  78. critique 10
  79. Cross, Nigel 12
  80. Cross, Anita Clayburn 10
  81. css 11
  82. culture 13
  83. curiosity 11
  84. cycles 7
  85. Danielewski, Mark Z. 4
  86. darkness 28
  87. Darwin, Will 10
  88. data 8
  89. death 38
  90. Debord, Guy 6
  91. decisions 10
  92. design 131
  93. details 31
  94. Dickinson, Emily 9
  95. Dieste, Eladio 4
  96. discovery 9
  97. doors 7
  98. Dorn, Brandon 11
  99. drawing 23
  100. Drucker, Peter F. 15
  101. Duany, Andres 18
  102. Eatock, Daniel 4
  103. economics 13
  104. efficiency 7
  105. Eisenman, Peter 8
  106. Eliot, T.S. 14
  107. emotion 8
  108. ending 14
  109. engineering 11
  110. Eno, Brian 4
  111. ethics 14
  112. euphony 38
  113. Evans, Benedict 4
  114. evolution 9
  115. experience 14
  116. farming 8
  117. fashion 11
  118. features 25
  119. feedback 6
  120. flaws 10
  121. Flexner, Abraham 8
  122. food 16
  123. form 19
  124. Fowler, Martin 4
  125. Franklin, Ursula M. 30
  126. friendship 6
  127. fun 7
  128. function 31
  129. games 13
  130. gardens 26
  131. Garfield, Emily 4
  132. Garfunkel, Art 6
  133. geography 8
  134. geometry 18
  135. goals 9
  136. Gombrich, E. H. 4
  137. goodness 12
  138. Graham, Paul 37
  139. graphics 13
  140. Greene, Erick 6
  141. Hamming, Richard 45
  142. happiness 17
  143. Harford, Tim 4
  144. Harper, Thomas J. 15
  145. Hayes, Brian 28
  146. heat 7
  147. Heinrich, Bernd 7
  148. Herbert, Frank 4
  149. Heschong, Lisa 27
  150. Hesse, Herman 6
  151. history 13
  152. Hoffman, Yoel 10
  153. Hofstadter, Douglas 6
  154. home 15
  155. Hoy, Amy 4
  156. Hoyt, Ben 5
  157. html 11
  158. Hudlow, Gandalf 4
  159. humanity 16
  160. humor 6
  161. Huxley, Aldous 7
  162. hypermedia 22
  163. i 18
  164. ideas 21
  165. identity 33
  166. images 10
  167. industry 9
  168. information 42
  169. infrastructure 17
  170. innovation 15
  171. interaction 10
  172. interest 10
  173. interfaces 37
  174. intuition 8
  175. invention 10
  176. Irwin, Robert 65
  177. Isaacson, Walter 28
  178. Ishikawa, Sara 33
  179. iteration 13
  180. Ive, Jonathan 6
  181. Jackson, Steven J. 14
  182. Jacobs, Jane 54
  183. Jacobs, Alan 5
  184. Jobs, Steve 20
  185. Jones, Nick 5
  186. Kahn, Louis 4
  187. Kakuzō, Okakura 23
  188. Kaufman, Kenn 4
  189. Keith, Jeremy 6
  190. Keller, Jenny 10
  191. Keqin, Yuanwu 8
  192. Ketheswaran, Pirijan 6
  193. Kingdon, Jonathan 5
  194. Kitching, Roger 7
  195. Klein, Laura 4
  196. Kleon, Austin 13
  197. Klinkenborg, Verlyn 24
  198. Klyn, Dan 20
  199. knowledge 29
  200. Kohlstedt, Kurt 12
  201. Kramer, Karen L. 10
  202. Krishna, Golden 10
  203. Kuma, Kengo 18
  204. language 20
  205. learning 30
  206. life 59
  207. light 31
  208. loneliness 12
  209. love 26
  210. Lovell, Sophie 16
  211. Lupton, Ellen 11
  212. Luu, Dan 8
  213. Lynch, Kevin 12
  214. MacIver, David R. 8
  215. MacWright, Tom 5
  216. Magnus, Margaret 12
  217. making 77
  218. management 14
  219. Manaugh, Geoff 27
  220. Markson, David 16
  221. Mars, Roman 13
  222. material 39
  223. math 16
  224. McCarter, Robert 21
  225. meaning 33
  226. media 16
  227. melancholy 52
  228. memory 29
  229. metaphor 10
  230. metrics 19
  231. microsites 49
  232. Miller, J. Abbott 10
  233. Mills, C. Wright 9
  234. minimalism 10
  235. Miyazaki, Hayao 30
  236. Mod, Craig 15
  237. modularity 6
  238. Mollison, Bill 31
  239. morality 8
  240. Murakami, Haruki 21
  241. music 16
  242. Müller, Boris 7
  243. Naka, Toshiharu 8
  244. names 11
  245. Naskrecki, Piotr 5
  246. nature 51
  247. networks 15
  248. Neustadter, Scott 3
  249. Noessel, Christopher 7
  250. notetaking 35
  251. novelty 11
  252. objects 16
  253. order 10
  254. ornament 9
  255. Orwell, George 7
  256. Ott, Matthias 4
  257. ownership 6
  258. Pallasmaa, Juhani 41
  259. Palmer, John 8
  260. patterns 11
  261. Patton, James L. 9
  262. Pawson, John 21
  263. perception 22
  264. perfection 7
  265. performance 17
  266. Perrine, John D. 9
  267. Petroski, Henry 24
  268. philosophy 6
  269. photography 20
  270. physics 6
  271. Pinker, Steven 8
  272. place 14
  273. planning 15
  274. Plater-Zyberk, Elizabeth 18
  275. poetry 13
  276. politics 9
  277. Pollan, Michael 6
  278. practice 10
  279. problems 31
  280. process 22
  281. production 7
  282. productivity 12
  283. products 21
  284. programming 9
  285. progress 16
  286. Pye, David 42
  287. quality 26
  288. questions 8
  289. Radić, Smiljan 20
  290. Rams, Dieter 16
  291. Rao, Venkatesh 14
  292. reading 16
  293. reality 13
  294. Reichenstein, Oliver 5
  295. religion 11
  296. Rendle, Robin 12
  297. repair 28
  298. research 17
  299. Reveal, James L. 4
  300. Richards, Melanie 3
  301. Richie, Donald 10
  302. Rougeux, Nicholas 4
  303. Rowe, Peter G. 10
  304. Rupert, Dave 4
  305. Ruskin, John 5
  306. Satyal, Parimal 9
  307. Saval, Nikil 13
  308. Sayers, Dorothy 32
  309. Schaller, George B. 7
  310. Schwulst, Laurel 5
  311. science 17
  312. seeing 36
  313. Sennett, Richard 45
  314. senses 11
  315. Seuss, Dr. 14
  316. Shakespeare, William 4
  317. Shorin, Toby 8
  318. silence 9
  319. Silverstein, Murray 33
  320. Simms, Matthew 19
  321. Simon, Paul 6
  322. simplicity 14
  323. Singer, Ryan 12
  324. skill 17
  325. Sloan, Robin 5
  326. Smith, Cyril Stanley 29
  327. Smith, Justin E. H. 6
  328. Smith, Rach 4
  329. socializing 7
  330. society 23
  331. software 68
  332. solitude 12
  333. Somers, James 8
  334. Sorkin, Michael 56
  335. sound 14
  336. space 20
  337. Speck, Jeff 18
  338. spirit 10
  339. streets 10
  340. structure 13
  341. Strunk, William 15
  342. Ström, Matthew 13
  343. style 30
  344. Sun, Chuánqí 15
  345. symbols 12
  346. systems 18
  347. Sōetsu, Yanagi 34
  348. Sōseki, Natsume 8
  349. Tanaka, Tomoyuki 9
  350. Tanizaki, Jun'ichirō 15
  351. taste 10
  352. Taylor, Dorian 16
  353. teaching 21
  354. teamwork 17
  355. technology 41
  356. texture 7
  357. thinking 31
  358. Thoreau, Henry David 8
  359. time 54
  360. Tolkien, J.R.R. 6
  361. tools 32
  362. touch 8
  363. transportation 16
  364. Trombley, Nick 44
  365. truth 15
  366. Tufte, Edward 31
  367. Turrell, James 6
  368. typography 25
  369. understanding 32
  370. urbanism 68
  371. ux 100
  372. Victor, Bret 9
  373. Viollet-le-Duc, Eugène 4
  374. vision 7
  375. visualization 34
  376. Voltaire 4
  377. wabi-sabi 8
  378. walking 23
  379. Wallace, David Foster 33
  380. Wang, Shawn 6
  381. war 7
  382. waste 12
  383. Watterson, Bill 4
  384. Webb, Matt 14
  385. Webb, Marc 3
  386. Weber, Michael H. 3
  387. Wechler, Lawrence 37
  388. whimsy 11
  389. White, E.B. 15
  390. Wirth, Niklaus 6
  391. wisdom 20
  392. Wittgenstein, Ludwig 7
  393. Woolf, Virginia 11
  394. words 35
  395. work 81
  396. writing 55
  397. Wurman, Richard Saul 18
  398. www 88
  399. Yamada, Kōun 5
  400. Yamashita, Yuhki 4
  401. Yudkowsky, Eliezer 17
  402. zen 38
  403. ⁘  ⁘  ⁘
  404. About
  405. RSS Feed
  406. Source

Research & Ethnography

Close
  • A study should persist

    Since we cannot interview the subject, we can only infer the past from the present. Ideally, a study should persist for at least the life span of an animal.

    George B. Schaller, The Pleasure of Observing
    • research
  • What is unspoken

    Ethnographic studies are distinct from ethological research in other species because we can speak with our subjects and ask them questions. This has tremendous value, but much of what humans do is not spoken, and we also observe, count, and measure.

    Karen L. Kramer, The Spoken and the Unspoken
    • research
    • ux
  • A nested classificatory hierarchy

    I organized behavioral codes to contain several levels of information. As in this example, if a child is outside playing with friends while minding her two-year-old sister, the activity was coded as 675: the 600 signifies noneconomic activity, the 70 that it is playing, and the 5 that it is playing while in charge of a child. All activities were coded in this way. A nested classificatory hierarchy preserves both detail for future research and flexibility to lump or disaggregate activities for analyses. This method of nesting information carries over into many kinds of coding and classificatory schemes.

    Karen L. Kramer, The Spoken and the Unspoken
    • research
  • Unfinished

    Leave the drawing unfinished. Record as much information as you need, but don’t draw any forms, details, or colors that are merely repetitive. The back and front of a representative flower on a plant, for example, or half of a bilaterally symmetrical animal may be all that’s necessary.

    Jenny Keller, Why Sketch?
    • research
  • Record them all

    You can’t tell often in advance which observations will prove valuable. Do record them all!

    — Joseph Grinnell, 1908

    John D. Perrine & James L. Patton, Letters to the Future
    • research
  • Recommendations for field notes

    Being an end-user of someone else’s field notes certainly gives you insight into the benefits of good note-taking skills. Our experiences as end-users and creators of archival field notes lead us to a few specific recommendations:

    (1) Don’t get bogged down in the details of format or style.

    Rules are counterproductive if they prevent a researcher from taking field notes in the first place.

    You will get more return by focusing on your content than by refining your formatting.

    (2) Compose your notes as if you were writing a letter to someone a century in the future.

    Writing for an external audience requires you to be more explicit in your descriptions and to take less knowledge for granted. Avoid the use of abbreviations, symbols, and other shortcuts that only you will understand.

    Ask yourself: How would you describe this to someone over the phone?

    (3) It is better to spend five minutes writing the important details than twenty minutes writing the trivial ones.

    John D. Perrine & James L. Patton, Letters to the Future
    • research
  • In Defense of Browsing

    An Essay by Leanne Shapton
    www.curbed.com

    The feeling of fortuitous gratitude at coming across unexpected information is something most of us who’ve done any research, have experienced — that kismet of finding the perfect book, one spine away from the one that was sought. In the field of art and image research, this sparking of transmission, of sequence and connection, happens on a subconscious level.

    …Why is the vernacular image still being dismissed as ephemera? Why is its study not being prioritized? All languages are alive, but visual language is galactic. Keywords are not eyeballs, and creating rutted pathways to follow is the antithesis of study. A century of visual language, knowledge, and connectivity is marching toward a narrow, parsimonious basement of nomenclature. The NYPL takes a step backward if it models its shelves and research on a search engine. Spontaneity is learning. Browsing is research.

    1. ​​The art of finding what you didn’t know you were looking for​​
    2. ​​Marginalia Search​​
    • connection
    • research
    • language
    • serendipity
    • chance
  • The illustrated guide to a Ph.D.

    An Article by Matt Might
    matt.might.net
    Image from matt.might.net on 2020-12-22 at 11.20.16 AM.jpeg

    Imagine a circle that contains all of human knowledge.
    By the time you finish elementary school, you know a little.
    By the time you finish high school, you know a bit more.
    With a bachelor's degree, you gain a specialty.
    A master's degree deepens that specialty:
    Reading research papers takes you to the edge of human knowledge.
    Once you're at the boundary, you focus.
    You push at the boundary for a few years.
    Until one day, the boundary gives way.
    And, that dent you've made is called a Ph.D..
    Of course, the world looks different to you now.
    So, don't forget the bigger picture.
    Keep pushing.

    • knowledge
    • science
    • progress
    • research
  • When users never use the features they asked for

    An Article by Austin Z. Henley
    web.eecs.utk.edu
    Image from web.eecs.utk.edu on 2021-12-06 at 8.23.38 PM.png

    We deployed our tool. Almost no one used it.

    The handful that did use it, used it once or twice and barely interacted with it. After a few days, zero people were using it.

    Why did they tell me they wanted these features?

    • features
    • ux
    • research
  • Why Most Published Research Findings Are False

    A Research Paper by John P.A. Ioannidis
    journals.plos.org

    There is increasing concern that most current published research findings are false. The probability that a research claim is true may depend on study power and bias, the number of other studies on the same question, and, importantly, the ratio of true to no relationships among the relationships probed in each scientific field. In this framework, a research finding is less likely to be true when the studies conducted in a field are smaller; when effect sizes are smaller; when there is a greater number and lesser preselection of tested relationships; where there is greater flexibility in designs, definitions, outcomes, and analytical modes; when there is greater financial and other interest and prejudice; and when more teams are involved in a scientific field in chase of statistical significance.

    • research
    • science
    • truth
  • How can we develop transformative tools for thought?

    A Research Paper by Andy Matuschak & Michael Nielsen
    numinous.productions
    Image from numinous.productions on 2021-11-05 at 8.05.31 AM.svg

    Conventional tech industry product practice will not produce deep enough subject matter insights to create transformative tools for thought.

    ...The aspiration is for any team serious about making transformative tools for thought. It’s to create a culture that combines the best parts of modern product practice with the best parts of the (very different) modern research culture. You need the insight-through-making loop to operate, whereby deep, original insights about the subject feed back to change and improve the system, and changes to the system result in deep, original insights about the subject.

    • making
    • thinking
    • tools
    • design
    • feedback
    • research
    • cognition
    • technology
    • software
  • A hypothesis is a liability

    A Research Paper by Itai Yanai & Martin Lercher
    genomebiology.biomedcentral.com
    BB34EE64-D085-4DF1-ADC7-39AE5C1CAF3F.webp

    There is a hidden cost to having a hypothesis. It arises from the relationship between night science and day science, the two very distinct modes of activity in which scientific ideas are generated and tested, respectively [1, 2]. With a hypothesis in hand, the impressive strengths of day science are unleashed, guiding us in designing tests, estimating parameters, and throwing out the hypothesis if it fails the tests. But when we analyze the results of an experiment, our mental focus on a specific hypothesis can prevent us from exploring other aspects of the data, effectively blinding us to new ideas.

    • research
    • science
    • discovery
  • Keep digging

    An Article by Ryan Singer
    m.signalvnoise.com

    The hardest thing about customer interviews is knowing where to dig. An effective interview is more like a friendly interrogation. We don’t want to learn what customers think about the product, or what they like or dislike — we want to know what happened and how they chose... To get those answers we can’t just ask surface questions, we have to keep digging back behind the answers to find out what really happened.

    • questions
    • research
    • understanding

    I asked one of my favorite questions: What was happening that showed you the way you were doing things wasn’t working anymore?

    This question is extremely targeted and causal. It’s a very simple question that invites her to describe the problem in a way that is hard, factual, time-bound, contextual, and specific — without any analysis, interpretation, speculation or rationalization. Just: What happened. What did you see. What was wrong.

  • Fast Path to a Great UX – Increased Exposure Hours

    An Article by Jared Spool
    articles.uie.com

    As we’ve been researching what design teams need to do to create great user experiences, we’ve stumbled across an interesting finding. It’s the closest thing we’ve found to a silver bullet when it comes to reliably improving the designs teams produce.

    The solution? Exposure hours. The number of hours each team member is exposed directly to real users interacting with the team’s designs or the team’s competitor’s designs. There is a direct correlation between this exposure and the improvements we see in the designs that team produces.

    • ux
    • research
    • metrics

    An important caveat:

    Each team member has to be exposed directly to the users themselves. Teams that have dedicated user research professionals, who watch the users, then in turn, report the results through documents or videos, don’t deliver the same benefits. It’s from the direct exposure to the users that we see the improvements in the design.

  • Weighing up UX

    An Article by Jeremy Keith
    adactio.com

    Metrics come up when we’re talking about A/B testing, growth design, and all of the practices that help designers get their seat at the table (to use the well-worn cliché). But while metrics are very useful for measuring design’s benefit to the business, they’re not really cut out for measuring user experience.

    1. ​​Two levels of veto​​
    2. ​​Our obedience to the king​​
    • metrics
    • ux
    • business
    • research
    • ethics
  • Monkeys testing random designs

    A Tweet by Jared Spool
    twitter.com

    A/B testing is an effective approach to use science to design and deliver deeply-frustrating user experiences.

    A/B testing without upfront research is just random monkeys testing random designs to see which of those designs do “best” against random criteria.

    If drug testing was actually implemented like most A/B tests, you’d give 2 drugs to 2 groups of people and pick the “winner” by whichever group had fewer deaths.

    • ux
    • research

    Shared by Adam Silver as A few notes about A/B testing from Jared Spool.

  • You and Your Research

    A Speech by Richard Hamming
    www.cs.virginia.edu

    This talk centered on Hamming's observations and research on the question "Why do so few scientists make significant contributions and so many are forgotten in the long run?"

    1. ​​Important problems​​
    2. ​​Open doors, open minds​​
    3. ​​Inverting the problem​​
    4. ​​Intellectual investment is like compound interest​​
    5. ​​Great people can tolerate ambiguity​​
    1. ​​The Art of Doing Science and Engineering: Learning to Learn​​
    • research
    • discovery
    • creativity
    • learning

See also:
  1. ux
  2. science
  3. discovery
  4. metrics
  5. creativity
  6. learning
  7. knowledge
  8. progress
  9. business
  10. ethics
  11. questions
  12. understanding
  13. connection
  14. language
  15. serendipity
  16. chance
  17. making
  18. thinking
  19. tools
  20. design
  21. feedback
  22. cognition
  23. technology
  24. software
  25. truth
  26. features
  1. John D. Perrine
  2. James L. Patton
  3. Karen L. Kramer
  4. Jared Spool
  5. Jenny Keller
  6. George B. Schaller
  7. Richard Hamming
  8. Matt Might
  9. Jeremy Keith
  10. Ryan Singer
  11. Leanne Shapton
  12. Itai Yanai
  13. Martin Lercher
  14. Andy Matuschak
  15. Michael Nielsen
  16. John P.A. Ioannidis
  17. Austin Z. Henley